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1. Introduction

The verification of the conjectured AdS/CFT correspondence [1 – 5] is a non-trivial inter-

polation problem between a pair of quite different theories, string theory on AdS5×S5 and

the maximally supersymmetric four dimensional N = 4 super Yang-Mills SU(N) gauge

theory (SYM). The duality predicts that certain SYM gauge invariant operators have

anomalous dimensions equal to the energy of dual massive string states. Even though a

drastic simplification is achieved in the planar limit N → ∞ with fixed ’t Hooft coupling

λ = g2
YM N , both quantities can not be simultaneously computed in the full range of the ’t

Hooft coupling.

On the gauge side, weak coupling perturbation theory provides explicit results at a

relatively low loop order [6, 7]. Assuming quantum integrability, it is possible to identify

the dilatation operator with an integrable quantum Hamiltonian and write its Bethe Ansatz

(BA) equations [8]. They are conjectured to reproduce the full weak coupling expansion

of anomalous dimensions in various closed sectors of the full PSU(2, 2|4) symmetry group.

This is true up to wrapping problems which occur at order O(λL) where L is the classical

dimension of the composite operator. This is an essential limitation to the possibility of

computing the all-order weak coupling expansion of operators with fixed dimension. Some

investigations suggest that wrapping problems could be overcome in the fermionic approach

based on the Hubbard model [9 – 13]. However, even if wrapping problems could be solved,

it would be non-trivial to extrapolate the BA predictions to strong coupling. It would also

be necessary to prove that eventual non-perturbative effects are captured by the gauge BA

equations.

On the string side, the exact quantization of type IIB superstring on AdS5 ×S5 is not

known. In the usual approach, one starts with an exact supergravity solution at large λ

and computes perturbative σ-model corrections. The accessible regions in the gauge and

string theories are apparently disjoint.

An overlap window opens as soon as BMN-like scaling limits are taken [14]. One

considers classical solutions with large angular momenta J on S5 (and/or spin on AdS5 in

more general cases). On the gauge side J is the R-charge of the dual composite operator.

In the strict BMN limit, J → ∞ with fixed λ′ = λ/J2, or in the near-BMN corrections

suppressed by 1/J factors, the two calculations can be compared because λ is large while

the gauge theory effective coupling λ′ can be small. The comparison reveals a typical three

loop disagreement (see for instance [15] for a review). Understanding the precise mechanism

behind this discrepancy is a main open problem in AdS/CFT. It has been suggested that it

arises because the string and gauge calculations are performed in the double limit J → ∞
and λ′ → 0 taken in opposite order [8]. This is an essential obstruction. To match string

calculations one should at least resum the weak coupling perturbative series before taking

the J → ∞ limit, something which is forbidden by the wrapping problems. Unfortunately,

we lack the necessary technical tools to perform such resummations,

For these reasons, it is sensible to try to look for string BA equations encoding the

σ-model corrections. At the classical level, the AdS5×S5 superstring [16] is integrable [17].

Assuming that the integrable structure can be maintained at the quantum level, string BA
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equations (SBA) have been proposed in [20]. They are similar in structure to the gauge

BA equations, but are modified by a non trivial dressing phase [18, 19].

To fix the dressing phase, the SBA equations have been deeply tested by comparing

their predictions with the semiclassical quantization of pp-wave states and spinning string

solutions where available (see for instance [21]). For pp-wave states, explicit string theory

calculations including curvature corrections to the flat space background predict anomalous

dimensions with the typical form [22]

∆pp − J = ∆pp
0 (λ′) +

1

J
∆pp

1 (λ′) + · · · . (1.1)

Both the thermodynamical limit ∆pp
0 (λ′) (independent on the dressing phase) and the first

quantum correction ∆pp
1 (λ′) are in full agreement with the explicit string calculation. For

spinning string states the comparison is more problematic. In this case, it is customary to

introduce J = J/
√

λ and the typical prediction for the semiclassical energy is

∆FT =
√

λ∆FT
0 (J ) + ∆FT

1 (J ) + · · · , (1.2)

(with FT standing for Frolov-Tseytlin). Now, the agreement with explicit string calcu-

lations is perfect for ∆FT
0 where it holds by construction, but only partial in ∆FT

1 . The

problem has been recently clarified in [23] with an explicit comparison in the case of

the sl(2) spinning string [24] and using the full available information about the dressing

phase [25 – 27]. At large J the exact string calculation admits the expansion

∆FT
1 (J ) =

∑

`≥2

f`

J `
+

∑

s≥0

as e−2π sJ . (1.3)

The SBA equations are known to reproduce the full power series, but not the exponentially

suppressed terms. The reason behind this failure in capturing non-perturbative finite size

corrections is a fundamental limitation of any approach based on the thermodynamical

classical Bethe Ansatz. It is not clear whether this problem could be solved by resumming

the conjectured all-order strong coupling series for the dressing factor [28, 29]. The reso-

lution of this discrepancy could require the introduction of new degrees of freedom in the

quantum Bethe Ansatz as pointed out very clearly in [23].

An outcome of the above discussion is that it is definitely very important to test the

SBA equations in all possible ways. In this spirit, apart from states admitting BMN-like

limits, another important structural test of the SBA equations is the ability of reproducing

the Gubser-Klebanov-Polyakov (GKP) prediction

E ∼ 2
√

n λ1/4, (1.4)

for the energy of level n massive string states as λ → ∞ [2]. The SBA equations are known

to generically agree with the GKP law, at least under mild reasonable assumptions on the

asymptotic behavior of Bethe momenta as λ → ∞ at finite J [20]. Nevertheless, the results

are reliable for large J only which is the limit where the SBA equations have been derived.

The easiest cases where the GKP law can be explicitly investigated (determining

also the dual level n) are the highest states in the compact rank-1 subsectors su(2) and
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su(1|1) [30 – 32]. For notational purposes we shall call these states antiferromagnetic (AF)

borrowing the wording from the su(2) case. In a recent paper [32], two of us proved that

the SBA equations predict the following result

∆SBA
su(2)(L, λ)

2L
=

1

2
λ1/4 + O(λ0),

∆SBA
su(1|1)(L, λ)

L
=

1√
2

(
1 − 1

L2

)1/2

λ1/4 + O(λ0), (1.5)

where L denotes the number of Bethe momenta in both sectors. Unfortunately, it is not

easy to compare these results with string theory calculations since the state dual to the AF

operators is not known. The only exception is the proposal [33] in the su(2) sector which,

however, does not agree with the GPK law.

The result eq. (1.5) is obtained at fixed L and studying the suitable solution of the

SBA equations as λ → ∞. Since the SBA equations are valid for large L, one would

like to know how many terms in the 1/L expansion of eq. (1.5) are correct. Indeed, the

correct procedure would require to take the large L limit of the SBA equations obtaining

the functions ∆AF
0,1 (λ) appearing in the expansion

∆SBA(L, λ)

L
= ∆AF

0 (λ) +
1

L
∆AF

1 (λ) + . . . . (1.6)

Then, one could safely take the large λ limit of each term. This is what we denote the

L, λ → ∞ limit. Unfortunately, it is not known how to solve the integral equations for the

Bethe roots distribution at large L in neither sector. Also, their strong coupling expansion

is ambiguous and only the λ,L → ∞ limit, i.e. expanding in power of λ−1/4 with fixed L

and eventually expanding in 1/L, is currently calculable.

In principle, the SBA equations are only one possible discretization of the classical

string Bethe equations. Also, different gauge-fixed formulation can lead to equivalent

equations, although with their special technical features. A remarkable example is indeed

described in [34] where quantum SBA equations are derived starting from the string action

in the so-called uniform light-cone gauge. This is the generalization of the usual flat space

light-cone gauge to the AdS5 ×S5 case [35 – 41, 34, 42]. Again, the equations are obtained

starting from the leading thermodynamical term in a (suitable light-cone) 1/J expansion

and discretising. In [34] the equations are matched to the near-BMN corrections to pp-

wave states fixing the leading dressing phase. Remarkably, a compact set of equations is

obtained where the dressing phase is somewhat reabsorbed.

The light-cone Bethe Ansatz equations (LCBA) recast the spectral problem in an

intriguing way and deserve in our opinion further investigation. In this paper, we analyze

them working on the AF states at large λ. We indeed show that the calculation in [32] can

be repeated in the LCBA framework achieving much more insight. In particular, in the

su(1|1) sector, we are able to solve them in the safe L, λ → ∞ limit clarifying the accuracy

of our previous calculation eq. (1.5).
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2. The light-cone Bethe Ansatz

We briefly review the LCBA equations derived in [34] to setup the notation. The uniform

light-cone gauge is based on the introduction of light-cone variables

X± =
1

2
(ϕ ± t), (2.1)

where ϕ is an angle on S5 conjugate to the angular momentum J and t is the global time

on AdS5 conjugate to the energy E. The gauge is fixed by the choice

X+ = τ, p+ = P+ = const, (2.2)

where p+ is conjugate to x−. The world-sheet light-cone Hamiltonian is

Hlc = −P−, (2.3)

and is a function of P+. Expanding at large P+ with λ/P 2
+ fixed one recovers the BMN

and near-BMN limit suitable to study the pp-wave states. The two equations

E − J = Hlc(P+), (2.4)

E + J = P+, (2.5)

lead to the following equation determining E

E = J + Hlc(E + J). (2.6)

The results for pp-wave states in all rank-1 sectors (including the non compact sl(2) case)

are consistent at O(1/P+) with the discrete equations

exp

(
i pk

P+ + sM

2

)
=

M∏

j=1
j 6=k

(
x+

k − x−
j

x−
k − x+

j

)
s

, (2.7)

where s = −1, 0, 1 in sl(2), su(1|1), and su(2). The variables x± are

x±(p) =
1

4

(
cot

p

2
± i

)
(1 + Hlc(p)) , (2.8)

where

Hlc(p) =

√
1 +

λ

π2
sin2 p

2
. (2.9)

In the next sections we shall analyze in details the properties of the highest energy solution

of the above equation in the two cases s = 0, 1. Of course, the energy E must be identified

with the anomalous dimension ∆ of the dual gauge invariant operators.
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3. su(1|1) sector

3.1 General features of the LCBA equations

The light cone Bethe equations are particularly simple in the su(1|1) sector and read

exp

(
i
P+

2
pk

)
= 1, (3.1)

P− =

M∑

k=1

√
1 +

λ

π2
sin2 pk

2
. (3.2)

where P± = ∆± J . To study the highest state and match the notation in [32] we consider

J =
L

2
, M = L, L ∈ 2N + 1. (3.3)

The equation for the Bethe momenta can be solved immediately and gives

pk =
4π

∆ + L/2
nk, nk ∈ Z. (3.4)

The remaining equation determines ∆L(λ)

∆L(λ) =
L

2
+

L∑

k=1

√
1 +

λ

π2
sin2 2π nk

∆L(λ) + L/2
. (3.5)

We solve this equation with {nk} in the symmetric range

{nk} =

{
−L − 1

2
, . . . , 0, . . . ,

L − 1

2

}
, (3.6)

which uniquely selects the highest state [31, 32]. In appendix (A) we prove that the above

equation admits a unique solution ∆L(λ) at fixed L.

The LCBA being derived at strong coupling, they should not be trusted to yield a

correct solution for ∆(λ) at weak coupling; however, in the same spirit of [31], we present

in appendix (B) some results for its weak coupling expansion which could be useful to

compare with those from future improved LCBA equations with a refined dressing.

3.2 Strong coupling expansion in the λ → ∞ limit at fixed L

As explained in the Introduction, we begin our analysis of the LCBA equations by studying

the λ,L → ∞ limit. In other words, we fix L and take the large λ limit, eventually

expanding in 1/L.

Due to the simplicity of the equations, we can prove analyticity at strong coupling, i.e.

exclude non-analytic corrections to the above relation as well as prove its convergence in

a suitable neighborhood of λ = +∞. This is non trivial and indeed is false in the L → ∞
limit as we shall discuss later. The proof of analyticity is reported in appendix (C).
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We can now systematically evaluate the perturbative strong coupling coefficients. We

denote the large λ expansion coefficients as

∆L(λ)

L
= cL λ1/4 + dL + eL λ−1/4 + · · · . (3.7)

We easily find the leading term (from the theorem in appendix (C), see also eq. (8.14)

of [34])

cL =
2

L
(
∑

nk>0

nk)
1/2 =

2

L

√
1

2

L − 1

2

L + 1

2
=

1√
2

(
1 − 1

L2

)1/2

. (3.8)

in perfect agreement with [32].

The NLO is also easy. The expansion of momenta is

pk =
αk

λ1/4
+

βk

λ1/2
+ . . . (3.9)

where

αk =
4πnk

LcL
, βk = −4πnk

Lc2
L

(
dL +

1

2

)
. (3.10)

On the other hand when p 6= 0 we have

√
1 +

λ

π2
sin2 pk

2
= λ1/4 1

2π
|αk| +

1

2π
βk sign αk. (3.11)

Taking into account the term with p = 0 we obtain

∆L(λ)

L
= λ1/4 1

2π L

∑

k

|αk| +
1

2π L

∑

k

βk sign αk +
1

2
+

1

L
+ . . . (3.12)

Consistency requires as before
∑

k

|nk| =
L2

2
c2
L, (3.13)

but also

dL =
1

2
+

1

L
+

1

2π L

∑

k

−4πnk

Lc2
L

(
dL +

1

2

)
sign nk = (3.14)

=
1

2
+

1

L
− 2

L2 c2
L

∑

k

|nk|
(

dL +
1

2

)
=

1

L
− dL.

Hence,

dL =
1

2L
. (3.15)

The NNLO is more involved. After some calculations it reads

eL =
1

4
√

2

(
1+

1

L

)2 (
1− 1

L2

)−1/2

− π2

12
√

2

(
1− 1

L2

)1/2

+
1

4
√

2

(
1− 1

L2

)1/2
L−1

2∑

k=1

1

k
. (3.16)
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L = 11

Figure 1: Numerical check of the NNLO strong coupling expansion of ∆L(λ)(λ) in the su(1|1)

sector.

At large L, eL ∼ ln L/(4
√

2) and does not admit a finite limit as L → ∞. In the next

section we shall discuss this important point. It is worthwhile to emphasize that the

NLO contributions to the dressing factor can in principle modify this term. Hence, it

could be correct if the LCBA equations turned out to reabsorb the full dressing phase or,

what is more natural, it would not be reliable if the LCBA equations required additional

corrections.

As a consistency check of the calculation, the above expansion is confirmed by the

numerical solution of the equation for ∆ as illustrated in figure (1) where we show the

constant values approached at large λ by the difference

λ1/2

(
∆L(λ)

L
− cL λ1/4 − dL − eL λ−1/4

)
, (3.17)

at various L.

To summarize, the main result of this section is the expansion

λ → ∞,
∆L(λ)

L
=

1√
2

(
1 − 1

L2

)1/2

λ1/4 +
1

2L
+ eL λ−1/4 + . . . . (3.18)

If one expands in 1/L, then only the O(L0) and O(L−1) terms are reliable because the

LCBA equations are derived at first order in 1/P+. However, eL has not a finite limit

as L → ∞ as a hint of the fact that the physically meaningful limit is the opposite one

L, λ → ∞. In the next section, we shall confirm the calculation leading to (the first two

terms of ) eq. (3.18) by an independent calculation using the SBA equations in the same

limit. Later, we shall discuss the opposite L, λ → ∞ case comparing it with eq. (3.18).
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4. Improved calculation in the SBA framework

As an independent check of eq. (3.18), we can repeat the calculation within the SBA

equations. We briefly recall some information about the strong coupling expansion of the

dressing factor. Then, we show that the leading term is enough to reproduce the first two

terms in eq. (3.18). Finally we do the computation, finding full agreement.

4.1 The dressing factor at strong coupling

The quantum string Bethe Ansatz equations can be written [20]

ei pi L =

M∏

j 6=i

Sij , Sij =

(
x+

i − x−
j

x−
i − x+

j

)
s 1 − λ

16π2

1

x+
i x−

j

1 − λ

16π2

1

x−
i x+

j

ei ϑij , (4.1)

where ϑ is the universal dressing factor. In the various rank-1 sectors we have

s =
1 0 −1

{su(2) su(1|1) sl(2)} , L = J +
s + 1

2
M. (4.2)

The variables x± are again

x± =
e±i p/2

4 sin(p/2)

(
1 +

√
1 +

λ

π2
sin2 p

2

)
. (4.3)

We now introduce the variables

ζ =
2π√

λ
, x̃± = 2 ζ x±. (4.4)

The scattering phase can be written [26]

ϑij =
1

ζ

∑

r≥2

∑

n≥0

cr,r+1+2n(ζ) (qr(x̃i) qr+1+2n(x̃j) − (i ↔ j)), (4.5)

where the local charges are

qr(x̃) =
i

r − 1

(
1

(x̃+)r−1
− 1

(x̃−)r−1

)
. (4.6)

The first two terms in the ζ-expansion of cr,s are

cr,s = δr+1,s − ζ
4

π

(r − 1)(s − 1)

(r + s − 2)(s − r)
+ O(ζ2). (4.7)

The scattering phase can be organized as

ϑij =
1

ζ
[χ−−

ij − χ−+
ij − χ+−

ij + χ++
ij − (i ↔ j)], (4.8)

χσσ′

ij = χ

(
4π√

λ
xσ

i ,
4π√

λ
xσ′

j

)
. (4.9)
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The function χ is expanded at strong coupling as:

χ =
∑

n≥0

χn ζn, (4.10)

and the first two terms χ0,1 can be given in closed form [26]

χ0(x, y) = −1

y
− xy − 1

y
log

xy − 1

xy
, (4.11)

χ1(x, y) =
1

π

[
log

y − 1

y + 1
log

x − 1/y

x − y
+

+Li2

(√
y − 1/

√
y

√
y −√

x

)
− Li2

(√
y + 1/

√
y

√
y −√

x

)
(4.12)

+Li2

(√
y − 1/

√
y

√
y +

√
x

)
− Li2

(√
y + 1/

√
y

√
y +

√
x

)]

Notice we cannot read trivially the powers of ζ from eq. (4.10) because λ appears non

trivially in the arguments of χn as well as in the expression of x±.

4.2 Subleading corrections to the SBA equations

Let us expand at large λ the Bethe momenta

pk =
αk

λ1/4
+

α′
k

λ1/2
+ · · · . (4.13)

The dressing phase at LO and NLO can also be expanded (for αk > 0) with the result

ϑLO
kj =

αkαj

2π
+

1

λ1/4

[
αk − 2

3
αj +

α′
kαj

3π
+

|αj |
3

− α′
k|αj |
6π

+
αkα

′
j

2π

]
, (4.14)

ϑNLO
kj = O(λ−1/2). (4.15)

This means that the coefficients α′ can be determined from the LO only, i.e. without

involving χ1 and its complicated analytic structure.

Let us now compute the subleading corrections in the SBA equations that explicitly

involve the LO dressing factor. The SBA equations in logarithmic form are

pk L = 2πnk +
∑

j 6=k


ϑjk − i log

1 − λ

16π2

1

x+
j x−

k

1 − λ

16π2

1

x−
j x+

k


 (4.16)

With the previous notation for the sums and exploiting antisymmetry of the term in brack-

ets we find

∑

k∈P

pk L = 2π
∑

k∈P

nk +
∑

k∈P

∑

j∈M


ϑjk − i log

1 − λ

16π2

1

x+
j x−

k

1 − λ

16π2

1

x−
j x+

k


 (4.17)
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For k ∈ P and j ∈ M we have at large λ

−i log

1 − λ

16π2

1

x+
j x−

k

1 − λ

16π2

1

x−
j x+

k

=
1

2
(αj − αk)

1

λ1/4
+ · · · (4.18)

At leading order we insert the first term of the expansion of ϑLO and obtain

0 = 2π
∑

k∈P

nk +
1

2π

∑

k∈P

∑

j∈M

αk αj . (4.19)

Using parity invariance we recover the known result

S ≡
∑

k∈P

αk =
π√
2

(L2 − 1)1/2. (4.20)

The next correction is determined from the O(λ−1/4) terms. The equation is

L
∑

k∈P

αk =
∑

k∈P

∑

j∈M

{
1

2
(αj − αk) + αk − 2

3
αj +

α′
kαj

3π
+

|αj|
3

− α′
k|αj |
6π

+
αkα

′
j

2π

}
(4.21)

Evaluating the sums and defining also

S′ =
∑

k∈P

α′
k, (4.22)

we easily obtain (again exploiting parity invariance of the Bethe momenta)

LS =
L − 1

2
S − 1

π
S S′ −→ S′ = −π

L + 1

2
. (4.23)

The asymptotic expansion of the anomalous dimension is

∆L(λ) =
L

2
+ 1 + 2

∑

k∈P

√
1 +

λ

π2
sin2 pk

2
(4.24)

−→ λ1/4

π
S +

1

π
S′ +

L + 2

2
+ O(λ−1/4). (4.25)

Replacing the values of S and S′ we obtain

∆L(λ)

L
=

1√
2

(
1 − 1

L2

)1/2

λ1/4 +
1

2L
+ O(λ−1/4), (4.26)

in full agreement with the first two terms in eq. (3.18).
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5. The su(1|1) sector at L → ∞ limit at fixed λ

In the previous sections we have established eq. (3.18) which is the λ,L → ∞ strong cou-

pling expansion of the anomalous dimension. In this section, we discuss the 1/L expansion

of the equation determining ∆ as well as its (correct) L, λ → ∞ limit. The main point

is that in the su(1|1) sector the LCBA equations for the Bethe momenta are immediately

solved by eq. (3.4). Thus, we do not need any integral equation for the Bethe root distri-

bution and we simply have to take the 1/L expansion of a trascendental equation for ∆

itself.

We start with the LCBA equation that we write as

∆L(λ) =
L

2
+ 1 + 2

L−1

2∑

k=1

√
1 +

λ

π2
sin2 2πk

∆L(λ) + L
2

. (5.1)

The sum in the r.h.s. can be evaluated by applying the Euler-MacLaurin summation formula

(Bk are Bernoulli numbers)

N−1∑

k=1

f(k) =

∫ N

0
f(x)dx − 1

2
[f(0) + f(N)] +

∑

k≥1

B2k

(2k)!

[
f (2k−1)(N) − f (2k−1)(0)

]
, (5.2)

where we notice that in our case f (2k−1)(0) = 0. The Euler-MacLaurin formula provides an

asymptotic expansion in powers of 1/L because the k-th term in the last contribution to

eq. (5.2) scales like 1/L2k−1. Our strategy will be that of solving the LCBA equation order

by order in 1/L in this asymptotic expansion. As discussed in appendix (D) the expansion

is expected to be only asymptotic in the Poincaré sense. This is not surpring since the

1/L expansion computes the various loop corrections in the σ-model and zero radius of

convergence is a common feature in perturbation theory of non-trivial field theories.

Writing

∆L(λ) = L

(
u − 1

2

)
+ z1 +

1

L
z2 + · · · (5.3)

and expanding, we obtain the leading order result

u = 1 +
u

π
E

(
π

u
,− λ

π2

)
, (5.4)

where E(z,m) is the standard incomplete elliptic integral of the second kind

E(z,m) =

∫ z

0

√
1 − m sin2 θ dθ. (5.5)

The NLO and NNLO corrections are determined by u and are given by

z1 = 0, (5.6)

z2 = − λ

12π
sin

2π

u

1√
1 + λ

π2 sin2 π
u (1 +

√
1 + λ

π2 sin2 π
u )

. (5.7)
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Remarkably, the O(1/L) correction vanishes. We can now expand u(λ) at large λ. As a

consistency check, we also report in appendix (E) the expansion at small λ.

Setting

x =
π

u
, t =

λ

π2
, (5.8)

we have to solve for t → ∞ the equation

π = x + E(x,−t). (5.9)

The expansion of this equation at t → +∞ and x = O(t−1/4) is not at all trivial. It is

worked out in appendix (F) with the result

E(x,−t) = (1 − cos x)
√

t +
1

4
√

t

(
1 + log(16t) + 2 log tan

x

2

)
+ . . . (5.10)

Using this expansion, the solution of the above equation turns out to be

x(t) =
√

2πt−1/4 +
1

24
√

2π
t−3/4(−3 log t − 6 log(8π) + 6 + 4π2) + . . . (5.11)

Replacing in

lim
L→∞

∆L(λ)

L
=

π

x
− 1

2
, (5.12)

we obtain

lim
L→∞

∆L(λ)

L
= u − 1

2
(5.13)

=
1√
2

λ1/4 +
1

48
√

2
λ−1/4 (3 log λ + 18 log 2 + 18 − 4π2) + O(λ−1/2 log λ).

Replacing the strong coupling expansion of u we obtain

z2 = − 1

6
√

2
λ1/4 + O(λ−1/4 log λ). (5.14)

In summary, we have found in the L, λ → ∞ limit:

∆L(λ)

L
=

1√
2

λ1/4 +
1

48
√

2
λ−1/4 (3 log λ + 18 log 2 + 18 − 4π2) + O(λ−1/2 log λ) +

+
1

L2

(
− 1

6
√

2
λ1/4 + O(λ−1/4 log λ)

)
+ . . . . (5.15)

A comparison with eq. (3.18) shows that the two limits in λ and L do not commute. The

equations are valid in the order L, λ → ∞ where the result is eq. (5.15). Only the leading

term both in L and λ is independent on the order. Similar results in the Hubbard model

formulation of the gauge BA are illustrated in [13].

Actually, eq. (5.15) contains an additional information beyond this term. The second

line is in principle affected by the NLO strong coupling terms in the dressing factor that,

honestly, is not expected to be taken into account in the LCBA equations. Also, the 1/L2
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term in the third line is beyond the validity of the equations that are fixed by looking at

O(1/P+) corrections. Nevertheless, we have proved that z1 = 0. Thus, our result reads

L, λ → ∞,
∆L(λ)

L
=

1√
2

λ1/4 + O
(

λ−1/4

L

)
+ O

(
λ1/4

L2

)
. (5.16)

Within this precision, the discrepancy with the λ,L → ∞ limit is localized in the 1/(2L)

term appearing in eq. (3.18).

6. The su(2) sector

6.1 General features of the LCBA equations

The LCBA equations read in this sector

exp

(
i pk

P+ + M

2

)
=

∏

j 6=k

x+
k − x−

j

x−
k − x+

j

(6.1)

where

x± =
1

4

(
cot

p

2
± i

) (
1 +

√
1 +

λ

π2
sin2 p

2

)
, (6.2)

where again

P+ = ∆ + J, (6.3)

P− = ∆ − J =

M∑

k=1

√
1 +

λ

π2
sin2 pk

2
. (6.4)

We are interested in the sector of operators with 2L fields and zero angular momentum.

So M = L, J = 2L − M = L.

6.1.1 λ = 0

Let us first discuss the case λ = 0. In this limit

1

2
(P+ + M) = J + M = 2L. (6.5)

We define

u =
1

2
cot

p

2
, (6.6)

p = 2arctan
1

2u
. (6.7)

The map is 1-1 with u ∈ R and p ∈ (−π, π). By standard manipulations we arrive at

2
∑

j 6=k

arctan(uk − uj) − 4L arctan(2uk) = 2π Jk, (6.8)
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where the correct choice of Bethe quantum numbers for the AF state is

Jk = {−L − 1

2
,−L − 3

2
, . . . ,

L − 3

2
,
L − 1

2
}. (6.9)

The associated solution has the first L/2 u > 0 and the other negative. This Bethe equation

can be recast in terms of the p variables and reads

2
∑

j 6=k

arctan

(
1

2
cot

pk

2
− 1

2
cot

pj

2

)
+ 2Lpk = 2π Rk (6.10)

with

Rk = {L + 1

2
,
L + 3

2
, . . . , L − 1

2
} ∪ (the opposite list). (6.11)

6.1.2 λ 6= 0

We now take λ > 0. We simply have to replace

2L −→ ∆L(λ) + 2L

2
(6.12)

and use the more complicated form of x±. The result is

2
∑

j 6=k arctan (Xkj) + ∆L(λ)+2L
2 pk = 2π Rk, (6.13)

∆L(λ) = L +
∑L

k=1

√
1 + λ

π2 sin2 pk

2 (6.14)

with the above {Rk} and where

Xkj =
cot pk

2 (1 +
√

1 + λ
π2 sin2 pk

2 ) − cot
pj

2 (1 +
√

1 + λ
π2 sin2 pj

2 )

2 +
√

1 + λ
π2 sin2 pk

2 +
√

1 + λ
π2 sin2 pj

2

. (6.15)

6.2 The λ → ∞ limit at fixed L

The numerical solution of the LCBA equations at fixed L by means of the Newton algo-

rithm [43] is perfectly feasible as discussed in full details in [32]. In figure (2), we show the

case L = 10 and the scaled momenta λ1/4 pk. In the same figure, we have also shown the

analytical prediction for the asymptotic p as derived below.

We can assume pk ∼ αk λ−1/4. If αi > 0 and αj < 0 we have at large λ

Xij →
4λ1/4

αi − αj
→ +∞ (6.16)

If instead αi, αj > 0 we find

Xij → − 4π

αiαj

αi − αj

αi + αj
. (6.17)

The Bethe equations reduce to

π L

2
− 2

∑

αj>0, j 6=i

arctan

(
4π

αiαj

αi − αj

αi + αj

)
+

1

2π
αi

∑

αj>0

αj = 2π Ri. (6.18)
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Figure 2: Scaled Bethe momenta for the AF state in the su(2) sector. Here L = 10.

This equation determines the αi > 0. For instance, for L = 10 we find

α1 = 3.51948258944006628701335069602,

α2 = 4.99794847442355681996436161771,

α3 = 6.34122560474632117268892612476, (6.19)

α4 = 7.63958729635505788529227272867,

α5 = 8.91768257093293021966752266564,

which are the values appearing in the previous figure. The distribution of positive αk for

L = 150 is shown in figure (3).

The strong coupling expansion of ∆L(λ) is thus again

∆L(λ)

2L
= cL λ1/4 + dL + O(λ−1/4) (6.20)

The analogous expansion for the Bethe momenta is

pk =
αk

λ1/4
+

βk

λ1/2
+ · · · (6.21)

and note that there is symmetry p → −p in the solution for the highest state. Expanding,
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Figure 3: Distribution of αk for L = 150.

we find (εx = sign x)

∆L(λ)

2L
=

1

2
+

1

2L

M∑

k=1

√
1 +

λ

π2
sin2 p

2
(6.22)

=
λ1/4

4πL

∑

k

|αk| +
1

4πL

∑

k

εαk
βk +

1

2
+ . . .

=
λ1/4

2πL

∑

k∈P

αk +
1

2πL

∑

k∈P

βk +
1

2
+ . . . ,

where P is the set of k such that αk > 0.

The Bethe equation can be written in the λ → ∞ limit and for i ∈ P

2
∑

j∈P

arctan Xij +
∑

j 6∈P

(
π − 1

2
(αi − αj)λ

−1/4 + . . .

)
+

αi

4π

∑

j

|αj |+ (6.23)

+
1

2





βi

2π

∑

j

|αj | + 3Lαi +
αi

2π

∑

j

εαj
βj



 λ−1/4 = 2πRi.

and using the parity symmetry

2
∑

j∈P

arctan Xij +
∑

j∈P

(
π − 1

2
(αi + αj)λ

−1/4 + . . .

)
+

αi

2π

∑

j∈P

αj+ (6.24)

+
1

2





βi

π

∑

j∈P

αj + 3Lαi +
αi

π

∑

j∈P

βj



 λ−1/4 = 2πRi.
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We now sum over i ∈ P and due to

∑

i,j∈P

arctan Xij = 0, (6.25)

we obtain

πL2

4
− L

2

∑

i∈P

αi λ−1/4 +
1

2π

(
∑

i∈P

αi

)2

(6.26)

+





1

π

∑

i∈P

βi

∑

j∈P

αj +
3

2
L

∑

i∈P

αi



 λ−1/4 = 2π

∑

Ri>0

Ri.

Collecting terms, we find the leading order

1

2π
(
∑

αi>0

αi)
2 = 2π

∑

Ri>0

Ri −
πL2

4
= 2π

3L2

8
− πL2

4
=

π L2

2
(6.27)

Hence, ∑

αi>0

αi = π L, −→ cL =
1

2
. (6.28)

Also, the NLO terms give

1

π

∑

i∈P

βi = −L, −→ dL = 0. (6.29)

In summary,

λ → ∞,
∆L(λ)

2L
=

1

2
λ1/4 + 0 + O(λ−1/4). (6.30)

This result can also be obtained in the SBA framework by repeating the calculation we

did in the su(1|1) sector. Unfortunately, here we are not able to find the strong coupling

limit of the LCBA equations at large L, exactly as with the SBA equations. From our

experience in the su(1|1) it seems very reasonable to claim that the leading term 1/2λ1/4

is independent on the order of limits.

7. Conclusions

The story of AdS/CFT duality is vexed by discrepancies related to the different limits in

which calculations can be performed under control on the two sides of the correspondence.

This is usually considered a weak coupling problem. In BMN limits, one takes a large R-

charge J and ’t Hooft coupling λ to control the string side. When going to small λ′ = λ/J2

it is possible to compare with gauge theory perturbative calculations, but this is just one

of the infinite directions along which λ and J can grow.

In this paper, we have considered these problems from another perspective wondering

whether the large λ and L region is free of ambiguities. We have shown that this is true

only at leading order. Actually, this is a problem which is not immediately related to the
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AdS/CFT correspondence. Instead, it seems to be a genuine feature of the string Bethe

Ansatz equations which are derived not only assuming that both λ and L are large, but also

taking the two limits in a precise order. We have shown that the anomalous dimensions of

the highest states in the compact rank-1 sectors do depend on the order of limits beyond

the leading term. This is not at all surprising, but seems to us an important warning.

Our results have been possible due to the particular simplicity of the light-cone string

Bethe Ansatz equations in the fermionic su(1|1) sector where the Bethe roots distribution

is trivial for all L. Gauge independence of the anomalous dimensions suggests that the

result should hold also for the standard equations with the AFS phase, although we could

not prove this statement in that context.

In conclusion, we remark that although rather special, highest states appears to be

an interesting island in the moduli space of the AdS5 × S5 superstring, complementary to

pp-wave and spinning string states. Indeed, our limited investigation has revealed some

subtleties in the structural properties of its quantum Bethe Ansatz equations enlightening

with explicit calculations the detailed way in which the Gubser-Klebanov-Polyakov law is

reproduced.
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A. Existence and unicity of ∆L(λ) in the su(1|1) sector

Theorem 1. The light cone equation eq. (3.5) for ∆L(λ) at fixed L admits a unique solu-

tion.

Proof: We write the equation in the form

∆L(λ) =
L

2
+ 1 + 2

L−1

2∑

k=1

√
1 +

λ

π2
sin2 2π k

∆L(λ) + L/2
(A.1)

The equation implies

∆L(λ) ≥ L

2
+ 1 + 2

L − 1

2
=

3L

2
. (A.2)

The derivative of the square root is

d

d∆L(λ)

√
1 +

λ

π2
sin2 2π k

∆L(λ) + L/2
= −k λ

π

sin 4πk
∆L(λ)+ L

2

(∆L(λ) + L
2 )2

√
1 + λ

π2 sin2 2π k
∆L(λ)+L/2

(A.3)

When ∆L(λ) ≥ 3L/2 and 1 ≤ k ≤ (L − 1)/2, the above expression is negative. Hence the

right hand side of eq. A.1 is monotonically decreasing with ∆L(λ). We conclude that there

is always a unique intersection with the left hand side.

¤
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B. Weak coupling expansion in the su(1|1) sector

It is clear that the function ∆L(λ) (at fixed L) is holomorphic in λ in a neighborhood of

λ = 0 by the analytic implicit function theorem [44]. We then expand

∆L(λ)

L
=

∞∑

n=0

γ
(n)
L

(
λ

π2

)n

(B.1)

With some effort, the various coefficients can be evaluated analytically. The first is trivial

γ
(0)
L =

3

2
. (B.2)

The next coefficient is

γ
(1)
L =

1

L

L−1

2∑

n=0

sin2 n π

L
=

1

4
, (L ∈ 2N + 1) (B.3)

We have computed the analytical expression of the next two coefficients and it reads

γ
(2)
L = − 1

64

(
3 +

2π

L sin π
L

)
, (B.4)

γ
(3)
L =

1

1024L2

1

cos2 π
2L

[
20L2 cos2

π

2L
+ π L cot

π

2L

(
9 +

1

cos π
L

)
+ 2π2

]
. (B.5)

Their expansion at large L is

γ
(2)
L = − 5

64
− 1

192

π2

L2
+ . . . , (B.6)

γ
(3)
L =

5

128
+

19

3072

π2

L2
+ . . . .

The other coefficients {γ(n)
L }n≥4 are more and more involved functions of L. Their expres-

sion is not enlightening.

Starting from γ
(2)
L the expansion coefficients depend on L. This is in sharp contrast

with what is obtained in the usual conformal gauge. There, all coefficients γ
(n)
L are L-

independent for a suitably large (but finite) L [31, 32]. Beside and more remarkably, the

disagreement with perturbative gauge theory starts at two loops. This is a simple fact that

in our opinion suggest that future improvement of the LCBA equations will be needed to

match the genuine weak coupling region.

C. Analyticity of ∆L(λ) in the su(1|1) sector at large λ

Theorem 2. The solution of the light cone equation eq. (3.5) for ∆L(λ) at fixed L admits

an analytic expansion at large λ of the form

∆L(λ) =

∞∑

n=0

an (λ1/4)1−n, (C.1)

with a finite radius of convergence.
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Proof: we start again from

∆L(λ) =
L

2
+

L∑

k=1

√
1 +

λ

π2
sin2 2π nk

∆L(λ) + L/2
, (C.2)

{nk} =

{
−L − 1

2
, . . . , 0, . . . ,

L − 1

2

}
. (C.3)

We set

w =
2π

∆L(λ) + L/2
, x4 =

π2

λ
. (C.4)

The equation becomes

2π

w
− L = 1 + 2

L−1

2∑

k=1

√
1 +

1

x4
sin2(k w), (C.5)

or, equivalently:

2π x2 − (L + 1)x2 w − 2w

L−1

2∑

k=1

sin(k w)

√
1 +

x4

sin2(k w)
= 0. (C.6)

We scale z = x/w and obtain

Φ(z,w) = 0, (C.7)

where

Φ(z,w) = 2π z2 − (L + 1)z2 w − 2

L−1

2∑

k=1

sin(k w)

w

√
1 + z4

w4

sin2(k w)
(C.8)

The equation

Φ(z0, 0) = 0, (C.9)

has the solution

z2
0 =

1

π

L−1

2∑

k=1

k =
L2 − 1

8π
. (C.10)

This corresponds to the asymptotic term

∆L(λ)

L
∼ 1√

2

(
1 − 1

L2

)1/2

λ1/4. (C.11)

Now, the function Φ(z,w) is holomorphic in a neighborhood of (z0, 0) and its partial deriva-

tives are non vanishing at that point since

∂Φ

∂z

∣∣∣∣
(z0,0)

= 4π z0,
∂Φ

∂w

∣∣∣∣
(z0,0)

= −(L + 1) z2
0 . (C.12)

Therefore, by exploiting once again the analytic implicit function theorem [44], we conclude

that both z(w) and w(z) are holomorphic functions and also that w is an analytic function

of x =
√

πλ−1/4 in a neighbourhood of x = 0, which is our thesis.

¤
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D. Convergence properties of the 1/L expansion of the gap equation in

the su(1|1) sector

We discuss in some details the convergence properties of the 1/L expansion of the gap

equation in the su(1|1) sector. The difficult piece is the finite sum appearing in the LCBA

hL =

L−1

2∑

k=1

√
1 +

λ

π2
sin2 2πk

Lu
≡

L−1

2∑

k=1

f

(
k

L

)
. (D.1)

We study this sum treating λ and ∆/L as fixed parameters and discussing the convergence

of the Euler-MacLaurin summation at large L. As a little simplification, we keep the

leading term in ∆ and therefore set ∆/L = u, with a fixed u ≥ 2.

The Euler-MacLaurin summation formula gives

hL =

∫ L+1

2L

0
f(x) dx − 1

2

[
f(0) + f

(
L + 1

2L

)]
+ eL, (D.2)

where

eL =
∑

p≥1

B2p

(2p)!L2p−1
f (2p−1)

(
L + 1

2L

)
. (D.3)

This is known to be an asymptotic expansion of the Poincare’ type, not necessarily con-

vergent. To investigate the convergence properties of eq. (D.3), we exploit an exact repre-

sentation of eL at finite L provided by the Abel-Plana formula [45]

eL = −i

∫ ∞

0

1

e2πρ − 1

[
f

(
L + 1 + 2 i ρ

2L

)
− f

(
L + 1 − 2 i ρ

2L

)]
dρ (D.4)

The advantage of this formula is that it can be analytically continued in the L variable in

order to study its analytic structure. ¿From the formula and the specific form of f(z), we

see that there is a cut extending up to L → ∞ forbidding analyticity. As a check, we have

evaluated several hundreds of terms in the series

eL =
∑

k≥0

ck

Lk
. (D.5)

By the way, this can be done quite efficiently by expanding the integrand of the Abel-Plana

formula and integrating term by term. We have performed the computation for generic

values of λ, u as well as for the pair (λ, u(λ)) solving eq. (5.4), one easily always find that

the successive odd coefficients dk = c2k+1 have the leading behavior

|dk| ∼ a bk kc kd k, (D.6)

with d > 0 and suitable a, b, c. The convergence radius of the expansion is therefore

confirmed to be zero.

As a toy computation explaining the precise origin of this non-analiticity, one can

consider the following simpler integral having the same analytic structure of the Abel-

Plana formula for our problem,

I(z) =

∫ ∞

0
e−ρ

√
1 + ρ z. (D.7)
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The exact integral can be evaluated and its imaginary part is indeed discontinuous at

arg z = π for any radius |z| showing the presence of a cut branching from z = 0. If we

expand the integrand in powers of z and integrate each term, we obtain the asymptotic

expansion

I(z) =
∑

k≥0

ck zk, ck =

(1
2

k

)
Γ(k + 1). (D.8)

Using the expansions at large k
(

1/2

k

)
∼ 2√

π
sin[π(k − 1/2)] k−3/2 , (D.9)

Γ(k) ∼
√

2π kk−1/2 e−k, (D.10)

we obtain

|ck| ∼
1√
2

e−k kk−1, (D.11)

which has the same form as eq. (D.6).

E. Weak coupling expansion of ∆L(λ)
su(1|1) in the L → ∞ limit

The weak coupling expansion of the eq. (5.4) is straightforward and we find

lim
L→∞

∆L(λ)

L
= u − 1

2
=

3

2
+

1

4

λ

π2
− 5

64

(
λ

π2

)2

+
5

128

(
λ

π2

)3

+

+
4π2 − 1179

49152

(
λ

π2

)4

+
3240 − 29π2

196608

(
λ

π2

)5

+ O(λ6). (E.1)

Replacing u in z2 we also obtain

z2 = π2

(
− 1

192

(
λ

π2

)2

+
19

3072

(
λ

π2

)3

+
π2 − 462

73728

(
λ

π2

)4

+ . . .

)
. (E.2)

The agreement with our previous results eq. (B.6) is complete.

F. The expansion of E(x,−t) for t → +∞

Theorem 3. The incomplete elliptic integral E(x,−t) with fixed x > 0, admits the expan-

sion for t → +∞

E(x,−t) = h0(x)
√

t +
∞∑

n=1

hn(x) + cn log(16 t)

tn−
1

2

, (F.1)

where the first terms of the expansion are

E(x,−t) = (1 − cos x)
√

t +
1

4
√

t

(
1 + log(16t) + 2 log tan

x

2

)
+

+
1

64 t3/2

(
3 − 2 log(16t) − 4 log tan

x

2
+ 4

cos x

sin2 x

)
+ . . . (F.2)

and the other are explicitly constructed in the proof.
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Proof: First we split

E(x,−t) = E(−t) −
∫ π/2

x

√
1 + t sin2 θ dθ, (F.3)

where E(−t) is the complete elliptic integral of the second kind

E(−t) =

∫ π/2

0

√
1 + t sin2 θ dθ =

π

2
2F1

(
−1

2
,
1

2
, 1,−t

)
. (F.4)

Its expansion for large t is non trivial since in the integral the quantity t sin2 θ is not large

when θ → 0.

The asymptotic expansion can be derived by using the formula

2F1(a, a + m, c, z) =
Γ(c)(−z)−a−m

Γ(a + m)Γ(c − a)

∞∑

n=0

(a)n+m(1 − c + a)n+m

n!(n + m)!
z−n [log(−z)+

+ψ(1 + m + n) + ψ(1 + n) − ψ(a + m + n) − ψ(c − a − m − n)] +

+(−z)a
Γ(c)

Γ(a + m)

m−1∑

n=0

Γ(m − n)(a)n
n!Γ(c − a − n)

z−n (F.5)

which is valid for |arg(−z)| < π, |z| > 1 and c − a 6∈ Z. We are interested in the case

a = −1/2, m = 1 and c = 1 that gives

E(−t) =
π

2
2F1

(
−1

2
,
1

2
, 1,−t

)
(F.6)

=
√

t+
1√
t

[
1+log 16t

4
+

3−2 log 16t

64t
+

3(log 16t−2)

256t2
+

5(133−60 log 16t)

49152t3
+ . . .

]

This expansion can be applied for t > 1.

The second integral in eq. (F.3) can be expanded at large t provided t sin2 x > 1 as

follows
∫ π/2

x

√
1 + t sin2 θ dθ =

∞∑

k=0

(
1/2

k

)
t

1

2
−k

∫ π/2

x

1

sin2k−1 θ
dθ =

=
√

t cos x −
∞∑

k=1

(
1/2

k

)
t

1

2
−k Ik(cos x), (F.7)

where

Ik(a) =

∫ a

0

1

(1 − u2)k
du (F.8)

This integral is elementary and reads

Ik(a) =
Γ(k − 1/2)

2
√

π Γ(k)
log

1 + a

1 − a
+

Pk(a)

(1 − a2)k−1
, (F.9)

where the polynomials Pk(a) are defined by

P1(a) = 0, (F.10)

Pk+1(a) =

(
1 − 1

2k

)
(1 − a2)Pk(a) +

a

2k
. (F.11)
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The first cases are

P2(a) =
a

2
, (F.12)

P3(a) = −a

8
(3a2 − 5), (F.13)

P4(a) =
a

48
(15a4 − 40a2 + 33). (F.14)

Collecting these results, we obtain

∫ π/2

x

√
1 + t sin2 θdθ =

√
t cos x − 1

2
√

t
log tan

x

2
+

1

16 t3/2

(
log tan

x

2
− cos x

sin2 x

)
+ . . .

(F.15)

Combining our results we prove the thesis.

¤

Remark: from the proof, we see that the expansion is valid if t sin2 x > 1. For our

application we have x ∼ t−1/4 and the expansion can be applied for large t.
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